PUBLIC HEALTH SERVICE U.S. FOOD AND DRUG ADMINISTRATION OFFICE OF FOOD SAFETY SHELLFISH AND AQUACULTURE POLICY BRANCH **5001 CAMPUS DRIVE**

COLLEGE PARK, MD 20740-3835 TEL. 240-402-4960/9258/7629, 301-796-0788

CFSANDSSLEOS@FDA.HHS.GOV

	SH LABORATO alytic Shellfish Po		ATION CHECKLIST HPLC-PCOX)	
LABORATORY:				
ADDRESS:				
TELEPHONE:	FAX:		EMAIL:	
DATE OF EVALUATION:	DATE OF RI	EPORT:	LAST EVALUATION:	
LABORATORY REPRESENT	TED BY:	TITLE:		
I ADODATODY EVALUATION	M OFFICED.	CHELLE	CH CRECIALICE.	
LABORATORY EVALUATIO	ON OFFICER:	SHELLFI	SH SPECIALIST:	
OTHER OFFICIALS PRESEN	NT:	TITLE:		
Items which do not conform a	re noted by:		Conformity is noted by a " $$ "	
C- Critical K - Key O - Oth	er N/A- Not App	olicable		

				PART I – QUALITY ASSURANCE
CODE	REF			ITEM
		1.1		Assurance (QA) Plan
K	5, 8		1.1.1	Written Plan adequately covers all the following: (check $\sqrt{\text{those that}}$
				apply)
				a. Organization of the laboratory.
				b. Staff training requirements.
				c. Standard operating procedures.
				d. Internal quality control measures for equipment, their calibration,
				maintenance, repair, performance and rejection criteria established.
				e. Laboratory safety.
				f. Internal performance assessment.
			110	g. External performance assessment.
C	5		1.1.2	QA Plan is implemented.
	G	1.2		ional/Experience Requirements
C	State's Human		1.2.1	In state/county laboratories, the supervisor meets the state/county
	Resources Department			educational and experience requirements for managing a public
				health laboratory.
K	State's Human		1.2.2	In state/county laboratories, the analyst(s) meets the state/county
	Resources Department			educational and experience requirements for processing samples in a
	_			public health laboratory.
C	USDA Microbiology		1.2.3	In commercial/private laboratories, the supervisor must have at least
	& EELAP			a bachelor's degree or equivalent in microbiology, biology,
				chemistry, or another appropriate discipline with at least two years
				of laboratory experience.
K	USDA Microbiology		1.2.4	In commercial/private laboratories, the analyst must have at least a high
	& EELAP			school diploma and shall have at least three months of experience in
				laboratory sciences.
C	5		1.2.5	LC-Operator must be competent in the operation and maintenance
		1.2	Words A	of a basic liquid chromatography system.
0	5 0	1.3	Work A	Area Adequate for workload and storage.
0	5, 8 8		1.3.1	Clean and well lighted.
0	8		1.3.3	Adequate temperature control.
0	8		1.3.4	All work surfaces are nonporous and easily cleaned.
	0	1 4		tory Equipment.
О	6	1.7	1.4.1	The pH meter has a standard accuracy of 0.1 unit.
K	6		1.4.2	pH paper in the appropriate range (i.e. 1-4), if used, is used with
**				minimum accuracy of 0.5 pH units.
K	10		1.4.3	pH electrodes consist of pH half-cell and reference half-cell or
	-			equivalent combination electrode/triode (free from Ag/AgCl or contains
				an ion exchange barrier to prevent passage of Ag ions into the medium
				that may result in inaccurate pH readings).
K	5		1.4.4	pH meter is calibrated daily when in use. Results are recorded and
				records are maintained.
K	8		1.4.5	Effect of temperature has been compensated for by an ATC probe, use
				of a triode or by manual adjustment.
K	8		1.4.6	A minimum of two standard buffer solutions is used to calibrate the pH
				meter. The first must be near the electrode isopotential point (pH 7).
				The second must be near the expected sample pH (i.e. pH 2, 4 or 11) as
				appropriate. Standard buffer solutions are used once and discarded.

National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish: 2023 Revision

K	5, 11	1.4.7	Electrode acceptability is determined daily or with each use following either slope or millivolt procedure.
K	6	1.4.8	The balances being used provide an appropriate sensitivity at the
	· ·	11110	weights of use, at least 0.1 g for laboratory precision balances and 0.1
			mg for analytical balances.
K	8, 9	1.4.9	The balance calibration is checked monthly using NIST class S, ASTM
11	0,)	1.4.7	class 1 or 2 weights or equivalent. Results are recorded and records are
			maintained.
K	1	1.4.10	Refrigerator temperature is maintained between 0 and 4 °C.
K	8	1.4.11	Refrigerator temperature is monitored at least once daily. Results are
			recorded and records maintained.
K	1	1.4.12	Freezer temperature is maintained at -20 °C or below.
K	8	1.4.13	Freezer temperature is monitored at least once daily. Results are
			recorded and records maintained.
C	13	1.4.14	All in-service thermometers are properly calibrated and immersed.
K	5	1.4.15	All glassware is clean.
K	3	1.4.16	A high performance liquid chromatography system (HPLC) equipped with the following is used:
			a. binary mobile phase system delivering a pulse-free flow of
			0.5-2.0 mL/min,
			b. solvent degasser,
			c. autosampler (refrigerated preferred) with loop suitable for 5-30 μL
			injections,
			d. temperature controlled column compartment capable of controlling temperature between $10-50$ °C, and
			e. fluorescence detector able to achieve the required sensitivity at an
			excitation wavelength (λ) of 330 nm and emission of 390 nm.
K	3, 4	1.4.17	The post-column reaction system used is equipped with the following:
			a. reactor module capable of maintaining 85 °C,
			b. dual reagent pumps capable of delivering accurate flows of 0.4
			mL/min, and
			c. if applicable, a reaction coil (knitted or equivalent) having a total
			volume of 1 mL and a length of 5 m x 0.5 mm.
K	6	1.4.18	Autopipettors are calibrated for the appropriate volumes used and
			checked annually for accuracy. Results are recorded and records are
		4 4 4 6	maintained.
K	3	1.4.19	A boiling water bath with sufficient volume to cover the sample/acid
0	2	1 4 20	mixture is used for extraction.
K	3 3	1.4.20	
K	3	1.4.21	Microcentrifuge capable of holding 1.5 mL microcentrifuge tubes and generating a minimum of 16000 g or equivalent is used.
		15 Dagger	its and Reference Solution Preparation and Storage
	2	,	<u> </u>
C	<u>3</u>	1.5.1	All solvents and reagents used are analytical or LC grade materials.
C	ð	1.5.2	Water is glass distilled or deionized and exceeds 0.5 megaohm resistance or is less than 2 µSiemens/cm conductivity at 25 °C to be
			tested and recorded monthly for resistance or conductivity and the
			results are recorded.
K	8	1.5.3	Water is analyzed for residual chlorine monthly and is at a nondetectable
1	-		level (≤ 0.1 ppm) Results are recorded and records are maintained.

K	8	1.5.4 Water contains < 100 CFU/ml as determined monthly using the
K	8	heterotrophic plate count method. Results are recorded and records are maintained.
K	8	1.5.5 Reagents are properly stored and labeled with the date of receipt, date opened or date prepared and expiration date.
С	3	1.5.7 The binary mobile phase system used to analyze the GTX and STX toxins consists of:
		1.5.7.1 Mobile Phase A, which contains 11 mM heptane sulfonate and 5.5 mM phosphoric acid (H ₃ PO ₄), pH 7.1.
		1.5.7.2 Mobile Phase B, which contains 11 mM heptane sulfonate, 16.5 mM H ₃ PO ₄ and 11.5% acetonitrile (MeCN), pH 7.1.
С	3	1.5.8 The binary mobile phase system used to analyze the C toxins consists of:
		1.5.8.1 Mobile Phase A, which contains 2 mM tetrabutyl ammonium phosphate, pH 5.8.
		1.5.8.2 Mobile Phase B, which contains 2 mM tetrabutyl ammonium phosphate in 4% acetonitrile, pH 5.8.
C	3	1.5.8 The post-column oxidant consists of 100 mM H ₃ PO ₄ and 5 mM periodic acid (H ₅ IO ₆), pH 7.8.
С	3	1.5.9 The post-column acid used is 0.75 M nitric acid (HNO ₃).
С	3	1.5.10 The heptane sulphonate used in mobile phase A and mobile phase B to analyze for GTX and STX toxins is prepared the day of use or refrigerated for up to one week.
С	3	1.5.11 The pH of mobile phases and the post-column oxidant are adjusted as follows:
		 a. Mobile phase A and mobile phase B for the GTX and STX toxins are adjusted to 7.1 with ammonium hydroxide (NH₄OH),
		b. Mobile phase A and mobile phase B for the C toxins are adjusted to 5.8 in one direction only with 10% acetic acid (HOAc) if too basic or 1% NH4OH if too acidic, and
		c. The post-column oxidant is adjusted to 7.8 with 5 M sodium hydroxide (NaOH).
		 d. Mobile phases and post-column reagents are filtered before use if the HPLC does not have a degreaser.
C	3,7	1.5.12 Only certified reference materials are used for standard solutions. Source of the reference standard:
С	7	1.5.13 NRC Zero-Mus or a negative control matched matrix is used as a matrix blank as appropriate. Source of the negative matrix:
С	7	1.5.14 All primary standards are stored appropriately as per supplier recommendations.
С	7	1.5.15 All standards used are within expiration date.
C	3	1.5.16 All standards are prepared gravimetrically.
K	3	1.5.17 Intermediate mixes of primary standards are made up in 0.003 M HCl for the GTX/STX toxins or pH 5 glass distilled/deionized water for the C toxins labeled with the date of preparation and the expiration date and stored appropriately. The pH of the glass distilled/deionized water is adjusted when necessary by the dropwise addition of 10% acetic acid (HOAc).

	3	1 5 10	Woulding standards are modern form of the last
C	3	1.5.18	Working standards are made up from primary standard or
			intermediate mixes by dilution with toxin-free, deproteinated, matrix
C	7	1 5 10	matched extracts. Zero-Mus is stored according to manufacturer's instructions.
C	2	1.5.20	Quality Control shellfish tissues are stored frozen.
C	7	1.5.21	Working standards are labeled with the date of preparation, stored
	,	1.3.21	appropriately and used within 3 months of preparation.
		1.C Callage	** * *
O	6		ion and Transportation of Samples Shellstock are collected in clean, waterproof, puncture resistant containers.
K	6	1.6.1	Samples are appropriately labeled with the collector's name, type of
K	U	1.0.2	shellstock, the harvest area, and time and date of collection.
C	6	1.6.3	Immediately after collection, shellstock samples are placed in dry
	U	1.0.3	storage (ice chest or equivalent) which is maintained between 0 and 10
			°C with ice or cold packs for transport to the laboratory.
K	14	1.6.4	Time from collection to initiation of the extraction should not exceed 24
11	1.	1.0.1	hours. However, if significant delays are anticipated or if they occur, the
			laboratory has an appropriate contingency plan in place to handle the
			samples. For samples shipped live in accordance with 1.6.3, the
			contingency plan ensures samples remain within allowable temperature
			tolerances and animals are alive upon receipt. The contingency plan also
			addresses field and/or laboratory processing that ensures the integrity of
			the sample or extract until initiation of the assay.
			For example, samples are washed, shucked, drained and processed as follows:
			a. refrigerated or frozen until extracted;
			b. homogenized and frozen until extracted; or
			c. extracted, the supernatant decanted, and refrigerated or frozen until
			assayed.
		1.5	· · · · · · · · · · · · · · · · · · ·
C	6	1.6.5	Frozen shucked product or homogenates are allowed to thaw
			completely and all liquid is included as part of the sample before
		DADEH E	being processed further.
			XAMINATION OF SHELLFISH FOR PSP TOXINS
-		·	ation of Sample
C	6	2.1.1	At least 12 animals are used per sample or the laboratory has an
			appropriate contingency plan for dealing with non-typical species of
0	6	2.1.2	shellfish. The outside of the shell is thoroughly cleaned with fresh water.
0	6	2.1.2	Shellstock are opened by cutting the adductor muscles.
0	6	2.1.3	The inside surfaces of the shells are rinsed with fresh water to remove
	U	Z.1. 4	sand and other foreign materials.
О	6	2.1.5	Shellfish meats are removed from the shell by separating the adductor
	0		muscles and tissue connecting at the hinge.
C	6	2.1.6	Damage to the body of the mollusk is minimized in the process of
		2.1.0	opening.
О	6	2.1.7	Shucked shellfish are drained on a #10 mesh sieve or equivalent without
			layering for 5 minutes.
K	6	2.1.8	Pieces of shell and drainage are discarded.
С	6	2.1.9	Drained meats or previously cooled/refrigerated shucked meats and
			their drip loss liquid or thawed homogenates with their freeze-thaw
			liquid are blended at high speed until homogenous (60-120 seconds).
		1	

		2.2 Digest	ion of Sample
K	6	2.2.1	Sample homogenates are extracted as soon as possible (preferably the
			same day) or stored in the freezer.
С	3	2.2.2	Five (5) grams of homogenized sample is weighed into a 50 mL
			polypropylene centrifuge tube and subsequently extracted.
K	3	2.2.3	The sample homogenate is extracted in a 1:1 w/v ratio with 0.1 M HCl.
K	3	2.2.4	Homogenate/acid mixture is vortexed thoroughly before boiling to
			completely mix the contents.
С	3	2.2.5	To prevent toxin transformation, the pH of the homogenate/acid
			mixture before boiling is 3.0 ± 1.0 , adjusted if necessary with the
			dropwise addition of either 5 M HCl to lower the pH or 0.1 M NaOH
			to raise the pH.
C	3	2.2.6	Samples in capped 50 mL polypropylene centrifuge tubes are
			extracted in a boiling water bath for 5 minutes.
K	3	2.2.7	The pH of the cooled mixture after boiling is 3.0 ± 1.0 , adjusted if
			necessary with the dropwise addition of 5 M HCl. Any sample with a pH
			of less than 2.0 is discarded and extracted again.
K	3	2.2.8	The homogenate/acid mixture is allowed to separate by gravity or by
			centrifugation.
		2.3 Depro	
C	3	2.3.1	500 μL of sample extract is deproteinated with 25 μL of 30%
			trichloroacetic acid, vortexed thoroughly and centrifuged
	3	222	at $\sim 16,000$ g for 5 minutes.
C	3	2.3.2	The pH of the deproteinated extract is adjusted with 35 µL of 1.0 M
			NaOH vortexed thoroughly and centrifuged at $\sim 16,000 g$ for 5 minutes.
K	3	2.3.3	An aliquot of the deproteinated supernatant is filtered through a 0.2 µm
1.	3	2.3.3	filter.
		2.4 Analy	
C	2	2.4.1	A standard calibration curve (of at least six concentrations) is
	_		performed upon initial instrument set up, following any major
			hardware maintenance activity, or when the continuing calibration
			verification (CCV) indicates significant drift (> 30% for individual
			toxin) from the calibration. Results are recorded and records are
			maintained.
K	3	2.4.2	10 μL is injected for GTX/STX toxins and 5 μL is injected for C-toxins.
K	3	2.4.3	Samples are stored in the sample compartment of the autosampler at 4 °C
			during analysis. Otherwise samples must be analyzed within 20 hours if
			the autosampler is held at room temperature.
K	3	2.4.4	A column heater that is capable of maintaining 30-40 °C for the GTX/STX
			toxins and 10-20 °C for the C toxins is used in the analysis.
C	3	2.4.5	The appropriate analytical column is used.
			a. GTX/STX Toxins: Agilent Zorbax Bonus-RP column, 4.6 mm x
			150 mm, 3.5 μm or equivalent.
			b. C Toxins: Thermo BetaBasic 8, 4.6 mm x 250 mm, 5 μm or
			equivalent.
		2.5 Syster	n Suitability
K	2	2.5.1	The correlation coefficient for the linear regression of the calibration
			standards must be ≥ 0.990 for each individual toxin.

C	3	2.5.2 The resolution and retention time criteria that must be met are:			
		a. For GTX and STX toxins, the matrix peak must be at least 70% baseline resolved between GTX3 and GTX2.			
		b. For GTX and STX toxins, GTX5 must be at least 40% baseline			
		resolved between dcGTX3 and dcGTX2.			
		c. For GTX and STX toxins, dcSTX and STX must be at least 70% baseline resolved.			
		d. For GTX and STX toxins, the retention time of GTX4 must be between 5 and 7 minutes.			
		e. For the C toxins, C2 must be at least 70% baseline resolved between C1 and C2.			
		f. For the C toxins, the retention time of C1 must be between 4 and 7 minutes.			
С	2	2.5.3 Daily injection schedules must include the adequate frequency of injection standards based on an assessment of individual standard toxin variability. Variability in peak response must be less than 10% for calculation of toxicity in samples.			
		2.6 Calculation of Toxicity			
С	4	2.6.1 The toxicity of the individual toxins is calculated as follows:			
		$\mu g STX diHCleq/100g = \mu M \times \frac{372.2}{1000mL} \times \frac{Fvol}{Ext.vol} \times \frac{Wt+Vol}{Wt} \times ReTx \times 100$			
		Where:			
		where: μM = Concentration of toxin in the extract, in μM;			
		Fvol = Final volume of the deproteinized extract (e.g. 560 μL);			
		Ext.vol = Volume of crude extract used (e.g. 500 μL);			
		Wt = Weight of sample used;			
		Vol = Volume of acid extractant used (e.g. 5 mL); and			
		ReTx = Relative toxicity of toxin vs. Saxitoxin.			
		Toxin ReTx Toxin ReTx			
		GTX1 0.9940 NEO 0.9243			
		GTX2 0.3592 STX 1.0000			
		GTX3 0.6379 dcSTX 0.5131			
		GTX4 0.7261 C1 0.0060			
		GTX5 0.0644 C2 0.0963			
		dcGTX2 0.1538 C3 0.0133 dcGTX3 0.3766 C4 0.0576			
		[UCG1A3 U.3700 C4 U.0370]			
	3	2.6.2 The individual toxicities for each toxin are summed to obtain the			
	3	overall sample toxicity in µg STX equivalents/100 g (µg/100 g).			
С	12	2.6.3 Any value at or above 80 µg STX equivalents /100 g of meat is			
		actionable.			

REFERENCES:

- 1. American Public Health Association. 1984. *Compendium for the Microbiological Examination of foods*, 2nd Edition. APHA. Washington D.C.
- 2. Good Laboratory Practice.
- 3. AOAC Official Methods of Analysis (2011). AOAC Official Method 2011.02 Paralytic Shellfish Toxins in Mussels, Clams, Oysters, and Scallops Post-Column Oxidation (PCOX) Method.
- 4. Oshima, Y. 1995. J. AOAC Int. 78: 528-532.
- 5. Association of Official Analytical Chemists (AOAC). 1991. *Quality Assurance Principles for Analytical Laboratories*. AOAC, Arlington, VA.
- 6. American Public Health Association. 1970. *Recommended Procedures for the Examination of Sea Water and Shellfish*, 4th Edition. APHA, Washington, D.C.
- 7. Consult reference standard product literature.
- 8. APHA/WEF/AWWA. 1992. *Standard Methods for the Examination of Water and Wastewater*, 18th Edition. APHA, Washington, D.C.
- 9. American Public Health Association. 1992. *Standard Methods for the Examination of Dairy Products*, 16th Edition. APHA, Washington, D.C.
- 10. Fisher, J. 1985. Measurement of pH. American Laboratory 16: 54-60.
- 11. Consult pH electrode product literature.
- 12. U.S. Food and Drug Administration (FDA) and Interstate Shellfish Sanitation Conference (ISSC). 2011. NSSP Guide to the Control of Molluscan Shellfish. FDA/ISSC, Washington, D.C. and Columbia, S.C.
- 13. U.S. Department of Commerce. 1976. NBS Monograph 150. U.S. Department of Commerce, Washington, D.C.
- 14. Compendium of Methods for the Microbiological Examination of Foods, 3rd Edition, pg. 901.

LABC	ORATO	DRY:	DATE OF EVALUATION:		
SHELLFISH LABORATORY EVALUATION CHECKLIST					
SUMMARY OF NONCONFORMITIES					
Page	Item	Observation	Documentation Required		
0			*		

National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish: 2023 Revision

LABORATORY STATUS					
LABORATORY	DATE				
LABORATORY REPRESENTATIVE:					
PARALYTIC SHELLFISH POISON (PSP), PCOX COMPONEN	T: PARTS I AND II				
A. Results Total # of Critical (C) Nonconformities Total # of Key (K) Nonconformities Total # of Critical, Key, and Other (O) Nonconformities					
B. Criteria for Determining Laboratory Status of the PSP, P	COX Component				
 Conforms Status: The PSP, PCOX component of this Lewith NSSP requirements if all of the following apply. a. No Critical nonconformities. b. and < 6 Key nonconformities. c. and < 12 Total nonconformities. 	aboratory is in conformity				
 2. Provisionally Conforms Status: The PSP, PCOX component of this laboratory is determined to be provisionally conforming to NSSP requirements if all of the following apply. a. the number of critical nonconformities is ≥ 1 but < 4. b. and < 6 Key nonconformities. c. and < 12 Total nonconformities. 					
 3. Does Not Conform Status: The PSP, PCOX component of this laboratory is not in conformity with NSSP requirements when any of the following apply. a. The total # of Critical nonconformities is ≥ 4. b. or the total # of Key nonconformities is ≥ 6. c. or the total # of Critical, Key, or Other is ≥ 12. 					
C. Laboratory Status (circle appropriate)					
Does Not Conform Provisionally Conforms C	Conforms				
Acknowledgement by Laboratory Director/Supervisor:					
All corrective Action will be implemented and verifying substantia	ating documentation received by the				
Laboratory Evaluation Officer on or before					
Laboratory Signature:Date:					
LEO Signature:Date:					

NSSP Form 4 – PSP HPLC PCOX Checklist, Rev. June 2024